慧聪网首页所有行业资讯中心企业管理商务指南展会访谈行业研究博客慧聪吧找供应找求购免费注册立即登录加入买卖通即时沟通网站导航

粉体技术在制药工业中的应用分析

2006/6/13/11:29 来源:中国药剂学杂志 作者:崔福德
    但是关于装量均一性与粉体流动性之间的关系,有不同的看法。流动性差的粉体由于密度差异,
装量差异会较大;流动性好的粉体不能充分振实,也能会导致较大的装量差异;也有人认为粉体的流动性与装量差异无关。Linda A.Felton 等[3]考察了微晶纤维素(MCC)和硅酸化微晶纤维素(SMCC)填充硬胶囊的载药量和装量差异。结果表明,密度较大、流动性好的SMCC 载药量大,装量差异小,但发现流动性不同的几种处方装量差异并不显著。 

    2.2.2 充填性影响 

    粉体的充填性是粉体集合体的基本性质,在胶囊、片剂的装填过程中具有重要的意义。物料颗粒的大小、形状、粒度分布、堆密度及空隙率等可直观地反映出其充填性。当颗粒的粒度分布很宽时,由于大、小粒子易发生分离现象而使堆密度产生差异,充填不均匀,容易造成分剂量的差异;
 
    如果粒度过大,易产生严重的重量偏差,因此在流动性满足生产的条件下粒度越小充填量越均匀。另外,粉体的充填性与粉体的流动性直接相关。在粉体的充填过程中,粉体颗粒的排列方式、
振动与否、以及是否加入助流剂等均影响到粉体的充填状态。 

    2.3 对压缩成形性的影响 

    压缩成形性表示粉体在压力下减少体积、紧密结合形成一定形状的能力。压缩成形性的评价方法很多,如压痕硬度、径向抗张强度、轴向强度、弯曲强度、破碎功等,也有在粉末的压缩过程中测定应力缓和值、粘结指数、脆碎指数、可压性参数等,其中最常用而简便的方法是测定其径向破碎力——硬度,与单位面积的破碎力——抗张强度。 

    2.3.1 压缩成形机理 

    物料的压缩成形性是一个复杂问题,许多国内外学者在不断地研究和探索压缩成形机理。目前主要有以下一些观点:a.压缩后粒子间距离很近,从而产生粒子间力,例如范德华力、静电引力等相互吸引而使成形;b.压缩后粒子产生塑性变形,从而粒子间的接触面积增大,粒子间力也增大;c.粒子受压变形后粒子相互嵌合而产生机械结合力;d.在压缩过程中产生热,熔点较低的物料部分地熔融,随后再固化而在粒子间形成“固体桥”而成形;e.压缩过程中,配方中的水溶性成分在粒子的接触点处结晶析出而形成“固体桥”,使物料成形并保持一定强度;f.粒子受压破碎而产生新的表面,新生表面具有较大的表面自由能而导致粒子聚集成形。其实在粒子的压缩成形过程中,并不是只存在上述一种机理,有可能两种或几种机理在同时发挥作用。 

    2.3.2 裂片问题及解决方法 

    在片剂压缩成形过程中,由于粉体性质方面的原因可能导致某些问题,如粘冲、色斑、麻点及裂片等。其中裂片(包括顶裂和腰裂)是个令人头疼的“常见病”,如果物料中细粉太多,压缩时空气不能排出,在解除压力后空气体积易发生膨胀而致裂片。目前引起人们重视的压力分布学说认为:压片时由于颗粒与颗粒、颗粒与冲模壁间的摩擦力造成片剂内部传递的各部位的压力分布不均匀而在片剂内部产生“内应力”,应力集中部位容易裂片。 

    另外,压力分布还与药物性质有关。

我要评论

】 【打印